World Pulses Day *#LovePulses* for healthy diets and planet

Demand led breeding in action

Annuarite UWERA, Bean breeder, Rwanda **Agriculture and Animal Ressources Development Board (RAB)**

Date: 10 February 2021

BILL&MELINDA GATES Joundatio

INTRODUCTION

Figure 2:

- Beans are priority for nutrition, food and income security in Rwanda.
 - \triangleright Primary source of dietary proteins; "chicken" of the poor; "vegetable meat" of the wealthier urban dwellers
 - Increasingly becoming a commercial crop with a monthly turn-over of about 1 million US\$, mostly in informal crossborder trade.
 - Important for health ecosystem
- Ranked 5th in terms of volume produced after bananas, Irish potato, sweet potatoes and cassava
- Beans are produced in all agro-ecologies of Rwanda either as bush or climbing varieties

Figure 1: Mean land area (ha) cultivated to cereals and leaumes in 2017/18 and 2018/19 cropping seasons

Counting on bean research: Catalyzing investment for increased resilience, gender equality and improved nutrition

for healthy diets and planet

OBJECTIVE OF RAB BEAN BREEDING PROGRAM

Develop farmers preferred, market demanded and climate resilient varieties

Developing and promoting the utilization of high yielding, multiple diseases resistant, marketable and nutrient rich bush, climbing and snap bean varieties

Promoting integrated soil fertility, diseases and pests, and staking management technologies that enhance sustainable productivity

Strengthening linkages among actors in the bean value chain to facilitate adoption, competitiveness and marketability of beans

Establishing partnerships and collaboration with international researchers to broaden the skills and expertise for scientific excellence and resource mobilization.

or healthy diets and planel

RAB BEAN BREEDING PROGRAM LINKAGES TO DIFFERENT PARTNERS

Activity

Trait Discovery

Collaborating Partner

Michigan State University (USAID, USDA-NIFA); BecA ILRI, Alliance-PABRA, UC-Davis, ACIAR KirkHouse Trust Foundation, ACIAR, ILRI-BECA

Molecular breeding

Conventional breeding, variety development, seed production, and dissemination

Capacity building

Alliance-PABRA (ECABREN), AGRA, Harvest Plus, ACIAR, Syngenta Foundation (SFSA)

Alliance-PABRA (ECABREN), AGRA, ROFORUM, Kirkhouse Trust, Michigan State, UC-Davis

Demand-led Breeding Stage Plan

Line progression decisions

#LovePulses for healthy diets and planet

Counting on bean

TRAITS PRIOROTIZATION TO RESPOND TO DEMAND

- ✓ Market oriented breeding and seed systems are the essential approaches to speed of better and more acceptable varietal diversity with better chances of adoption for higher bean productivity.
- ✓ Through multi stakeholder platforms (Business Innovation Platforms & Rwanda bean alliance), traits were prioritised

Counting on bean research: Catalyzing investment for increased resilience, gender equality and improved nutrition

RAB BEAN BREEDING PROGRAM, PRODUCT PROFILE

Developing responsive breeding pipeline and varieties that are developed to respond to farmers and off takers

Product	Large red	Medium red	Medium red	Large red	Large-medium	Medium White	Medium Yellow	Medium –small
profile	mottled	mottled		kidney	Sugar			Yellow
Variety to		RWR 2245				RWV 3006	G2331	
replace								
Growth	Climber	Bush	Bush	Bush	Climber	Climber	Climber	Bush
type								
Target agro-	low, mid-high	low-mid altitude	low-mid	low-mid	low-mid	low-mid	low-mid altitude	low-mid altitude
ecology	altitude		altitude	altitude	altitude	altitude		
Target	National and	National, East	National, East	National, Eat	National and	National and	National ,East	National ,East
market	East Africa	Africa, India and	Africa,'	Africa, India and	East Africa	East Africa	Africa, Oman,	Africa, Oman,
		Asia	India and Asia	Asia			Australia	Australia
Yield	2.5-4.0 T/Ha	1.5-2.5 T/Ha	1.5-2.5 T/Ha	1.5-2.5 T/Ha	2.5-4.0 T/Ha	2.5-4.0 T/Ha	2.5-4.0 T/Ha	1.5-2.5 T/Ha
potential								
Maturity	95-115 DM	75-95 DM	75-95 DM	75-95 DM	75-95 DM	75-95 DM	75-95 DM	75-95 DM
Abiotic	Drought	Drought	Drought	Drought	Drought	Drought	Drought tolerance	Drought tolerance
stresses	tolerance	tolerance	tolerance	tolerance	tolerance	tolerance		
Diseases	Resistance/tol	Resistance/toler	Resistance/tole	Resistance/toler	Resistance/toler	Resistance/tole	Resistance/tolera	Resistance/toleranc
	erance to	ance to BCMNV,	rance to	ance to	ance to BCMNV,	rance to	nce to BCMNV,	e to BCMNV, RR &
	BCMNV, RR &	RR&	BCMNV,RR &	BCMNV,RR	RR &	BCMNV, RR&	RR& Anthracnose	Anthracnose
	Anthracnose	Anthracnose	Anthracnose	&Anthracnose	Anthracnose	Anthracnose		
Iron & zn	Fe: 75-	Fe:70-90ppm;	Fe:70-	Fe:70-90ppm;	Fe:70-	Fe:70-90ppm;	Fe:70-90ppm; Zn:	Fe: 70-
	100ppm;	Zn: 30-35 ppm	90ppm;Zn:30-	Zn:30-35 ppm	90ppm;Zn:30-	Zn:30-35 ppm	30-35 ppm	90ppm;Zn:30-35
	Zn:30-40 ppm		35 ppm		35 ppm			ppm

iets and planet

Co

Replacement plan for RWR 2245 by RWR 3194

RWR 2245

✓ Target clients: Farmers, traders,

processors, consumers (women and children)

✓ Target markets: Local, regional,

national and international export markets

✓ Market class: Red mottled

However, in the last four years, seed multipliers and researchers have reported RWR 2245

to be susceptible to anthracnose with decreased yield of 500 kg/ha.

RWR 3194

- ✓ high yielding (2,100 kg/ha compared to 2000kg/ha of RWR 2245),large-seeded
- ✓ has a high seed iron content (ppm) of 86-94 higher than 76 of RWR 2245;
- ✓ It is resistant to angular Leaf Spot, Anthracnose, Bean Common Mosaic Necrosis Virus, Common Bacterial Blight, Halo blight, *Fusarium solani*, *Pythium spp*.

CURRENT SEED SYSTEM IN RWANDA

Counting on bean research: Catalyzing investment for increased resilience, gender equality and improved nutrition

MAJOR ACHIEVEMENTS.....

2020 Annual bean grain demand among new off-taker investors Rwanda

No	Off-taker	Volume (MT)
1	Nourifam Itd	30,000
2	Enas	15,000
3	EAX	6,000
4	4B Holdings	3,000
5	Sarura	1,000
6	RGCC	1,000
	Yak Fair	
7	trade	1,000
8	Farm fresh	700
9	BRG	500
	Spring	
	Integrated	
10	Со	500
11	Agri face	100
12	PANOVITA	100
13	NDENGU	100
Total		59,000

MOST PREFERRED VARIEIES BY OFFFTAKERS

Red and red kidney: RWV 3316,BOA5-1/16,NUA566

Red mottled: RWR 2245,MAC 44,RWR 3194,MBC23,MBC 71

Colta

World Pulses Day

#LovePulses for health

CAB2,

RWV 3006

bean research: Catalyzing investment for increased resilience, gender equality and improved nutrition

MAJOR ACHIEVEMENTS....

- ✓ Over 100 bean varieties released over 20 years of which several are released in other East and Central African countries; Burundi, DRC, Kenya, Ethiopia, Tanzania and Uganda
- ✓ Proof of concept of biofortification in common bean happened in Rwanda 10 varieties rich in Fe and or Zn micro-nutrients being released in 2012
- ✓ Current adoption of biofortified beans is at 28% of adoption
 - Biofortified beans have been shown to improve work capacity
 - Increase farmers income
 - Raised hemoglobin levels
 - Positive effect on cognitive ability in Rwanda females and brain function
 - Adoption of climbing bean increases yield by 23% among adopters and has the potential to increase yield by 48% for non-adopters.

Impact of iron biofortified beans on yields and farmers' incomes: The case of Rwanda

Jose Funes¹, Laixiang Sun¹, Todd Benson², Fernando Sedano¹, Giovanni Baiocchi¹, and Ekin

Department of Geographical Sciences, University of Maryland, College park ²International Food Policy Research Institute, Washington, DC ³HarvestPlus, Washington, DC

pared for presentation at the 2019 Agricultural and Applied Econ Association Annual Meeting, Atlanta, GA

Abstract

poact of the adoption of cor mallholder farmers in Rwanda. Created through conventional breeding, these beans conta me mina. IBB bank groupers on average increased their yields by 23% per borts tion in season B 2015. Additionally, we found evidence of negative selection by assessing the impac-IBB adoption on those smallholder farmers who are less likely to adopt-for instance, because of access s this is typically found among farmers that have small land-la tified bean seeds should be prioritized in Rwanda, and elsewhere in Africa We expect th on of IBB to not only improve yields and incomes, but also the dietary iron intake of household n

R Check for up

Article	
Climbing bean as a solution to increase productivity in land-constrained environments: Evidence from Bwanda	Outlook on Agriculture 2019, Vol. 48(1) 28-36 © The Author(s) 2018 Article reuse guidelines: sagesub.com/lournals-permissions DOI:10.1177/0030723(18113/49 journals.sagesub.com/home/oag

Enid Katungi¹, Catherine Larochelle², Josephat Mugabo and Robin Buruchara

Climbing bean is a potential solution to increase the agricultural sector productivity and sustainability. Using national representative bean-producing household data collected in Rwanda, this study identifies factors that influence the decision to switch from cultivating bush to climbing bean and quantifies the impact of climbing bean adoption on yield. About 50% of bean-producing households grow climbing bean, a substantial increase over the past 15 years. Elevation, population ssure, and drought shocks are important drivers of climbing bean adoption. Adoption of climbing bean increases yield by 23% among adopters and has the potential to increase yield by 48% for non-adopters. Findings from this study provide important information for the development of agricultural policies and programs in Rwanda and elsewhere

Keywords climbing bean, technological adoption, yield, endogenous switching regression

Consumption of Iron-Biofortified Beans Positively Affects Cognitive Performance in 18- to 27-Year-Old Rwandan Female College Students in an 18-Week Randomized Controlled **Efficacy Trial**

Laura E Murray-Kolb,¹ Michael J Wenger,^{2,3} Samuel P Scott,¹ Stephanie E Rhoten,² Mercy G Lung'aho,⁴ and Jere D Haas³

Pepartment of Nutritional Sciences, The Pennsylvania State University, University Park, PA; ²Department of Psych nd Behavioral Neurobiology, University of Oklahoma, Norman, OK: ³Division of Nutritional Sciences, Cornell Unive and ⁴HarvestPlus, CIAT/Rwanda, Kigali, Rwanda

Abstract

neurotransmitter regulation or brain energy metabolism. Women of reproductive age (WRA) are among those who are mos vulnerable to iron deficiency; however, they have been largely ignored in the literature relating iron status to cognitic Objective: Our aim was to determine the efficacy of iron-biofortified beans in improving cognition in WRA compared wi

control beans Methods: A d

(ferritin <20 µo/L). Women were randomly assigned to consume iron-biofortified beans (86.1 ppm iron) or control bean (50.1 ppm iron) daily for 18 wk. Iron status was assessed based on hemoglobin, ferritin, transferr mance on 5 computerized tasks at baseline and endlin

tesuits: Groups did not differ on any variables at baseline. Per protocol analyses revealed t biofortified beans resulted in a 17% larger improvement in the speed of spatial selective attention; a nearly 7-fold large mprovement in the speed, a 68% greater improvement in the efficiency, and a >2-fold greater improvement in the specificity of memory retrieval; and a >2-fold larger improvement in the speed and a >3-fold larger improvement in the efficiency of memory search—all of which are relative to consumption of the control beans (P < 0.01 for all comparisons

Counting on bean research: Catalyzing investment for increased resilience, gender equality and improved nutrition

OUR VISION

- ✓ Continually develop more superior farmer preferred and market demanded varieties;
- ✓ Accelerate variety access in partnership with private sector;
- ✓ Engaging policy makers to continue supporting bean value chain development including research;
- ✓ Increase the adoption of HIBs;
- ✓ Strengthen linkages between key value chain actors;
- ✓ Reinforce contract arrangement among value chain actors;
- ✓ Increase farmers awareness on the use of quality seed;
- \checkmark Ensure the sustainability of seed supply in the system.

Thank you!

